• Jump To … +
    ./demo/canvas-001.js ./demo/canvas-002.js ./demo/canvas-003.js ./demo/canvas-004.js ./demo/canvas-005.js ./demo/canvas-006.js ./demo/canvas-007.js ./demo/canvas-008.js ./demo/canvas-009.js ./demo/canvas-010.js ./demo/canvas-011.js ./demo/canvas-012.js ./demo/canvas-013.js ./demo/canvas-014.js ./demo/canvas-015.js ./demo/canvas-016.js ./demo/canvas-017.js ./demo/canvas-018.js ./demo/canvas-019.js ./demo/canvas-020.js ./demo/canvas-021.js ./demo/canvas-022.js ./demo/canvas-023.js ./demo/canvas-024.js ./demo/canvas-025.js ./demo/canvas-026.js ./demo/canvas-027.js ./demo/canvas-028.js ./demo/canvas-029.js ./demo/canvas-030.js ./demo/canvas-031.js ./demo/canvas-032.js ./demo/canvas-033.js ./demo/canvas-034.js ./demo/canvas-035.js ./demo/canvas-036.js ./demo/canvas-037.js ./demo/canvas-038.js ./demo/canvas-039.js ./demo/canvas-040.js ./demo/canvas-041.js ./demo/canvas-042.js ./demo/canvas-043.js ./demo/canvas-044.js ./demo/canvas-045.js ./demo/canvas-046.js ./demo/canvas-047.js ./demo/canvas-048.js ./demo/canvas-049.js ./demo/canvas-050.js ./demo/canvas-051.js ./demo/canvas-052.js ./demo/canvas-053.js ./demo/canvas-054.js ./demo/canvas-055.js ./demo/canvas-056.js ./demo/canvas-057.js ./demo/canvas-058.js ./demo/canvas-059.js ./demo/canvas-060.js ./demo/canvas-061.js ./demo/canvas-062.js ./demo/canvas-063.js ./demo/canvas-064.js ./demo/canvas-065.js ./demo/canvas-066.js ./demo/canvas-067.js ./demo/canvas-068.js ./demo/canvas-069.js ./demo/canvas-070.js ./demo/canvas-071.js ./demo/canvas-072.js ./demo/canvas-073.js ./demo/canvas-201.js ./demo/canvas-202.js ./demo/canvas-203.js ./demo/canvas-204.js ./demo/canvas-205.js ./demo/canvas-206.js ./demo/canvas-207.js ./demo/canvas-208.js ./demo/canvas-209.js ./demo/canvas-210.js ./demo/canvas-211.js ./demo/canvas-212.js ./demo/delaunator-001.js ./demo/delaunator-002.js ./demo/dom-001.js ./demo/dom-002.js ./demo/dom-003.js ./demo/dom-004.js ./demo/dom-005.js ./demo/dom-006.js ./demo/dom-007.js ./demo/dom-008.js ./demo/dom-009.js ./demo/dom-010.js ./demo/dom-011.js ./demo/dom-012.js ./demo/dom-013.js ./demo/dom-015.js ./demo/dom-016.js ./demo/dom-017.js ./demo/dom-018.js ./demo/dom-019.js ./demo/dom-020.js ./demo/dom-021.js ./demo/filters-001.js ./demo/filters-002.js ./demo/filters-003.js ./demo/filters-004.js ./demo/filters-005.js ./demo/filters-006.js ./demo/filters-007.js ./demo/filters-008.js ./demo/filters-009.js ./demo/filters-010.js ./demo/filters-011.js ./demo/filters-012.js ./demo/filters-013.js ./demo/filters-014.js ./demo/filters-015.js ./demo/filters-016.js ./demo/filters-017.js ./demo/filters-018.js ./demo/filters-019.js ./demo/filters-020.js ./demo/filters-021.js ./demo/filters-022.js ./demo/filters-023.js ./demo/filters-024.js ./demo/filters-025.js ./demo/filters-026.js ./demo/filters-027.js ./demo/filters-028.js ./demo/filters-029.js ./demo/filters-030.js ./demo/filters-031.js ./demo/filters-032.js ./demo/filters-033.js ./demo/filters-034.js ./demo/filters-035.js ./demo/filters-036.js ./demo/filters-037.js ./demo/filters-101.js ./demo/filters-102.js ./demo/filters-103.js ./demo/filters-104.js ./demo/filters-105.js ./demo/filters-501.js ./demo/filters-502.js ./demo/filters-503.js ./demo/filters-504.js ./demo/filters-505.js ./demo/mediapipe-001.js ./demo/mediapipe-002.js ./demo/mediapipe-003.js ./demo/modules-001.js ./demo/modules-002.js ./demo/modules-003.js ./demo/modules-004.js ./demo/modules-005.js ./demo/modules-006.js ./demo/packets-001.js ./demo/packets-002.js ./demo/particles-001.js ./demo/particles-002.js ./demo/particles-003.js ./demo/particles-004.js ./demo/particles-005.js ./demo/particles-006.js ./demo/particles-007.js ./demo/particles-008.js ./demo/particles-009.js ./demo/particles-010.js ./demo/particles-011.js ./demo/particles-012.js ./demo/particles-013.js ./demo/particles-014.js ./demo/particles-015.js ./demo/particles-016.js ./demo/particles-017.js ./demo/snippets-001.js ./demo/snippets-002.js ./demo/snippets-003.js ./demo/snippets-004.js ./demo/snippets-005.js ./demo/snippets-006.js ./demo/temp-001.js ./demo/temp-shape-scale-investigation.js ./demo/tensorflow-001.js ./demo/tensorflow-002.js ./demo/utilities.js
  • §

    Demo Tensorflow 001

    Tensorflow tfjs-models / body-pix experiment - follow my eyes

  • §

    Run code

    import * as scrawl from '../source/scrawl.js';
    
    import { reportSpeed } from './utilities.js';
  • §

    Scene setup

    const canvas = scrawl.findCanvas('mycanvas');
  • §

    Namespacing boilerplate

    const namespace = canvas.name;
    const name = (n) => `${namespace}-${n}`;
  • §

    TensorFlow functionality

    We’ll handle everything in a raw asset object, which a Picture entity can then use as its source

    const myAsset = scrawl.makeRawAsset({
    
        name: name('tensorflow-model-interpreter'),
    
        userAttributes: [{
  • §

    We’re only interested in the metadata generated by the tensorflow model in this demo

            key: 'parts',
            defaultValue: {},
            setter: function (item) {
    
                if (item && item.allPoses && item.allPoses.length) {
    
    /** @ts-expect-error */
                    const { parts, leftEyeX, leftEyeY, leftEye, rightEyeX, rightEyeY, rightEye, wobbleDamper } = this;
    
                    const segs = item.allPoses[0];
    
                    segs.keypoints.forEach(s => parts[s.part] = s.position);
    
                    if (parts.leftEye != null) {
    
    /** @ts-expect-error */
                        this.dirtyData = true;
    
                        const eye = parts.leftEye;
    
                        if (leftEyeX.length > wobbleDamper) leftEyeX.shift();
                        if (leftEyeY.length > wobbleDamper) leftEyeY.shift();
    
                        leftEyeX.push(eye.x);
                        leftEyeY.push(eye.y);
    
                        leftEye[0] = Math.round(leftEyeX.reduce((a, v) => a + v, 0) / leftEyeX.length);
                        leftEye[1] = Math.round(leftEyeY.reduce((a, v) => a + v, 0) / leftEyeY.length);
                    }
    
                    if (parts.rightEye != null) {
    
    /** @ts-expect-error */
                        this.dirtyData = true;
    
                        const eye = parts.rightEye;
    
                        if (rightEyeX.length > wobbleDamper) rightEyeX.shift();
                        if (rightEyeY.length > wobbleDamper) rightEyeY.shift();
    
                        rightEyeX.push(eye.x);
                        rightEyeY.push(eye.y);
    
                        rightEye[0] = Math.round(rightEyeX.reduce((a, v) => a + v, 0) / rightEyeX.length);
                        rightEye[1] = Math.round(rightEyeY.reduce((a, v) => a + v, 0) / rightEyeY.length);
                    }
                }
  • §

    We can also check for image dimensions as that info is also passed on by the model output

                if (item && item.width && item.height) {
    
    /** @ts-expect-error */
                    if (this.canvasWidth !== item.width) {
    
    /** @ts-expect-error */
                        this.canvasWidth = item.width;
    /** @ts-expect-error */
                        this.dirtyData = true;
                    }
    
    /** @ts-expect-error */
                    if (this.canvasHeight !== item.height) {
    
    /** @ts-expect-error */
                        this.canvasHeight = item.height;
    /** @ts-expect-error */
                        this.dirtyData = true;
                    }
                }
            },
        },{
            key: 'leftEyeX',
            defaultValue: [],
            setter: () => {},
        },{
            key: 'leftEyeY',
            defaultValue: [],
            setter: () => {},
        },{
            key: 'rightEyeX',
            defaultValue: [],
            setter: () => {},
        },{
            key: 'rightEyeY',
            defaultValue: [],
            setter: () => {},
        },{
            key: 'wobbleDamper',
            defaultValue: 2,
        },{
            key: 'leftEye',
            defaultValue: [0, 0],
            setter: () => {},
        },{
            key: 'rightEye',
            defaultValue: [0, 0],
            setter: () => {},
        },{
            key: 'canvasWidth',
            defaultValue: 0,
            setter: () => {},
        },{
            key: 'canvasHeight',
            defaultValue: 0,
            setter: () => {},
        }],
  • §

    assetWrapper is the same as this when function is declared with the function keyword

        updateSource: function (assetWrapper) {
    
            const { element, engine, leftEye, rightEye, canvasWidth, canvasHeight } = assetWrapper;
            const end = 2 * Math.PI;
  • §

    Clear the canvas, resizing it if required

            element.width = canvasWidth;
            element.height = canvasHeight;
  • §

    Draw our filled circles onto the canvas

            engine.globalAlpha = 0.5;
    
            engine.fillStyle = 'red';
            engine.beginPath();
            engine.arc(...leftEye, 50, 0, end);
            engine.fill();
    
            engine.fillStyle = 'orange';
            engine.beginPath();
            engine.arc(...rightEye, 50, 0, end);
            engine.fill();
        },
    });
  • §

    The forever loop function, which captures the tensorflow model’s output and passes it on to our raw asset for processing

    const perform = function (net) {
    
        net.segmentPerson(video.source)
        .then(parts => {
    
            myAsset.set({parts});
            perform(net);
        })
        .catch(e => console.log(e));
    };
  • §
    Import and use livestream

    convenience handle for the media stream asset

    let video;
  • §

    Capture the media stream

    scrawl.importMediaStream({
        name: name('device-camera'),
        video: {
            width: { ideal: 600 },
            height: { ideal: 400 },
            facingMode: 'user',
        },
    })
    .then(mycamera => {
    
        video = mycamera;
  • §

    This fixes the issue in Firefox where the media stream will crash Tensorflow if the stream’s video element’s dimensions have not been set

    /** @ts-expect-error */
        video.source.width = "600";
    /** @ts-expect-error */
        video.source.height = "400";
  • §

    Take the media stream and display it in our canvas element

        scrawl.makePicture({
    
            name: name('mediastream-video'),
            asset: mycamera.name,
    
            width: '100%',
            height: '100%',
    
            copyWidth: '100%',
            copyHeight: '100%',
        });
  • §

    Start the TensorFlow model

    /* eslint-disable */
    /** @ts-expect-error */
        bodyPix.load()
    /* eslint-enable */
        .then (net => {
  • §

    Display the visual generated by our raw asset

            scrawl.makePicture({
    
                name: name('tensorflow-data-output'),
                asset: name('tensorflow-model-interpreter'),
                order: 1,
    
                dimensions: ['100%', '100%'],
                copyDimensions: ['100%', '100%'],
            });
  • §

    Invoke the forever loop

            perform(net);
        })
        .catch(e => console.log('ERROR: ', e));
    })
    .catch(err => console.log(err.message));
  • §

    Scene animation

    Function to display frames-per-second data, and other information relevant to the demo

    const report = reportSpeed('#reportmessage');
  • §

    Create the Display cycle animation

    scrawl.makeRender({
    
        name: name('animation'),
        target: canvas,
        afterShow: report,
    });
    
    console.log(scrawl.library);