• Jump To … +
    ./demo/canvas-001.js ./demo/canvas-002.js ./demo/canvas-003.js ./demo/canvas-004.js ./demo/canvas-005.js ./demo/canvas-006.js ./demo/canvas-007.js ./demo/canvas-008.js ./demo/canvas-009.js ./demo/canvas-010.js ./demo/canvas-011.js ./demo/canvas-012.js ./demo/canvas-013.js ./demo/canvas-014.js ./demo/canvas-015.js ./demo/canvas-016.js ./demo/canvas-017.js ./demo/canvas-018.js ./demo/canvas-019.js ./demo/canvas-020.js ./demo/canvas-021.js ./demo/canvas-022.js ./demo/canvas-023.js ./demo/canvas-024.js ./demo/canvas-025.js ./demo/canvas-026.js ./demo/canvas-027.js ./demo/canvas-028.js ./demo/canvas-029.js ./demo/canvas-030.js ./demo/canvas-031.js ./demo/canvas-032.js ./demo/canvas-033.js ./demo/canvas-034.js ./demo/canvas-035.js ./demo/canvas-036.js ./demo/canvas-037.js ./demo/canvas-038.js ./demo/canvas-039.js ./demo/canvas-040.js ./demo/canvas-041.js ./demo/canvas-042.js ./demo/canvas-043.js ./demo/canvas-044.js ./demo/canvas-045.js ./demo/canvas-046.js ./demo/canvas-047.js ./demo/canvas-048.js ./demo/canvas-049.js ./demo/canvas-050.js ./demo/canvas-051.js ./demo/canvas-052.js ./demo/canvas-053.js ./demo/canvas-054.js ./demo/canvas-055.js ./demo/canvas-056.js ./demo/canvas-057.js ./demo/canvas-058.js ./demo/canvas-059.js ./demo/canvas-060.js ./demo/canvas-061.js ./demo/canvas-062.js ./demo/canvas-063.js ./demo/canvas-064.js ./demo/canvas-065.js ./demo/canvas-066.js ./demo/canvas-067.js ./demo/canvas-068.js ./demo/canvas-069.js ./demo/canvas-070.js ./demo/canvas-071.js ./demo/canvas-072.js ./demo/canvas-073.js ./demo/canvas-201.js ./demo/canvas-202.js ./demo/canvas-203.js ./demo/canvas-204.js ./demo/canvas-205.js ./demo/canvas-206.js ./demo/canvas-207.js ./demo/canvas-208.js ./demo/canvas-209.js ./demo/canvas-210.js ./demo/canvas-211.js ./demo/canvas-212.js ./demo/delaunator-001.js ./demo/delaunator-002.js ./demo/dom-001.js ./demo/dom-002.js ./demo/dom-003.js ./demo/dom-004.js ./demo/dom-005.js ./demo/dom-006.js ./demo/dom-007.js ./demo/dom-008.js ./demo/dom-009.js ./demo/dom-010.js ./demo/dom-011.js ./demo/dom-012.js ./demo/dom-013.js ./demo/dom-015.js ./demo/dom-016.js ./demo/dom-017.js ./demo/dom-018.js ./demo/dom-019.js ./demo/dom-020.js ./demo/dom-021.js ./demo/filters-001.js ./demo/filters-002.js ./demo/filters-003.js ./demo/filters-004.js ./demo/filters-005.js ./demo/filters-006.js ./demo/filters-007.js ./demo/filters-008.js ./demo/filters-009.js ./demo/filters-010.js ./demo/filters-011.js ./demo/filters-012.js ./demo/filters-013.js ./demo/filters-014.js ./demo/filters-015.js ./demo/filters-016.js ./demo/filters-017.js ./demo/filters-018.js ./demo/filters-019.js ./demo/filters-020.js ./demo/filters-021.js ./demo/filters-022.js ./demo/filters-023.js ./demo/filters-024.js ./demo/filters-025.js ./demo/filters-026.js ./demo/filters-027.js ./demo/filters-028.js ./demo/filters-029.js ./demo/filters-030.js ./demo/filters-031.js ./demo/filters-032.js ./demo/filters-033.js ./demo/filters-034.js ./demo/filters-035.js ./demo/filters-036.js ./demo/filters-037.js ./demo/filters-101.js ./demo/filters-102.js ./demo/filters-103.js ./demo/filters-104.js ./demo/filters-105.js ./demo/filters-501.js ./demo/filters-502.js ./demo/filters-503.js ./demo/filters-504.js ./demo/filters-505.js ./demo/mediapipe-001.js ./demo/mediapipe-002.js ./demo/mediapipe-003.js ./demo/modules-001.js ./demo/modules-002.js ./demo/modules-003.js ./demo/modules-004.js ./demo/modules-005.js ./demo/modules-006.js ./demo/packets-001.js ./demo/packets-002.js ./demo/particles-001.js ./demo/particles-002.js ./demo/particles-003.js ./demo/particles-004.js ./demo/particles-005.js ./demo/particles-006.js ./demo/particles-007.js ./demo/particles-008.js ./demo/particles-009.js ./demo/particles-010.js ./demo/particles-011.js ./demo/particles-012.js ./demo/particles-013.js ./demo/particles-014.js ./demo/particles-015.js ./demo/particles-016.js ./demo/particles-017.js ./demo/snippets-001.js ./demo/snippets-002.js ./demo/snippets-003.js ./demo/snippets-004.js ./demo/snippets-005.js ./demo/snippets-006.js ./demo/temp-001.js ./demo/temp-shape-scale-investigation.js ./demo/tensorflow-001.js ./demo/tensorflow-002.js ./demo/utilities.js
  • §

    Demo Tensorflow 002

    Tensorflow tfjs-models / body-pix experiment - model image output

  • §

    Run code

    import * as scrawl from '../source/scrawl.js';
    
    import { reportSpeed } from './utilities.js';
  • §

    Scene setup

    const canvas = scrawl.findCanvas('mycanvas');
  • §

    Namespacing boilerplate

    const namespace = canvas.name;
    const name = (n) => `${namespace}-${n}`;
  • §

    Build out the filters

    scrawl.makeFilter({
    
        name: name('grayscale'),
        method: 'grayscale',
    
    }).clone({
    
        name: name('sepia'),
        method: 'sepia',
    
    }).clone({
    
        name: name('invert'),
        method: 'invert',
    
    }).clone({
    
        name: name('red'),
        method: 'red',
    });
    
    scrawl.makeFilter({
    
        name: name('pixelate'),
        method: 'pixelate',
        tileWidth: 20,
        tileHeight: 20,
        offsetX: 8,
        offsetY: 8,
    });
    
    scrawl.makeFilter({
    
        name: name('background-blur'),
        method: 'gaussianBlur',
        radius: 20,
    });
    
    scrawl.makeFilter({
    
        name: name('body-blur'),
        method: 'gaussianBlur',
        radius: 10,
    });
  • §

    TensorFlow functionality

    We’ll handle everything in a raw asset object, which a Picture entity can then use as its source

    const myAsset = scrawl.makeRawAsset({
    
        name: name('tensorflow-model-interpreter'),
    
        userAttributes: [{
  • §

    We’re only interested in the pixel allocations generated by the tensorflow model in this demo

            key: 'data',
            defaultValue: [],
            setter: function (item) {
    
                if (item && item.width && item.height && item.data) {
    
    /** @ts-expect-error */
                    this.canvasWidth = item.width;
    /** @ts-expect-error */
                    this.canvasHeight = item.height;
    /** @ts-expect-error */
                    this.data = item.data;
    /** @ts-expect-error */
                    this.dirtyData = true;
                }
            },
        },{
            key: 'canvasWidth',
            defaultValue: 0,
            setter: () => {},
        },{
            key: 'canvasHeight',
            defaultValue: 0,
            setter: () => {},
        }],
    
        updateSource: function (assetWrapper) {
    
            const { element, engine, canvasWidth, canvasHeight, data } = assetWrapper;
    
            if (canvasWidth && canvasHeight && data) {
    
                const segLength = canvasWidth * canvasHeight,
                    imageDataLen = segLength * 4,
                    imageArray = new Uint8ClampedArray(imageDataLen);
    
                for (let i = 0, o = 0; i < segLength; i++) {
    
                    o = (i * 4) + 3;
                    if (data[i]) imageArray[o] = 255;
                }
    
                const iData = new ImageData(imageArray, canvasWidth, canvasHeight);
  • §

    Clear the canvas, resizing it if required

                element.width = canvasWidth;
                element.height = canvasHeight;
    
                engine.putImageData(iData, 0, 0);
            }
        },
    });
  • §

    The forever loop function, which captures the tensorflow model’s output and passes it on to our raw asset for processing

    const perform = function (net) {
    
        net.segmentPerson(video.source)
        .then(data => {
    
            myAsset.set({data});
            perform(net);
        })
        .catch(e => console.log(e));
    };
  • §
    Import and use livestream

    convenience handle for the media stream asset

    let video, myBackground, myOutline;
  • §

    Capture the media stream

    scrawl.importMediaStream({
    
        name: name('device-camera'),
        video: {
            width: { ideal: 600 },
            height: { ideal: 400 },
            facingMode: 'user',
        },
    })
    .then(mycamera => {
    
        video = mycamera;
  • §

    This fixes the issue in Firefox where the media stream will crash Tensorflow if the stream’s video element’s dimensions have not been set

    /** @ts-expect-error */
        video.source.width = "600";
    /** @ts-expect-error */
        video.source.height = "400";
  • §

    Take the media stream and display it in our canvas element

        myBackground = scrawl.makePicture({
    
            name: name('background'),
            asset: mycamera.name,
            order: 2,
    
            width: '100%',
            height: '100%',
    
            copyWidth: '80%',
            copyHeight: '80%',
            copyStartX: '10%',
            copyStartY: '10%',
    
            globalCompositeOperation: 'destination-over',
        });
    
        myBackground.clone({
    
            name: name('body'),
            order: 1,
            globalCompositeOperation: 'source-in',
        });
  • §

    Start the TensorFlow model

    /* eslint-disable */
    /** @ts-expect-error */
        bodyPix.load()
    /* eslint-enable */
        .then (net => {
  • §

    Display the visual generated by our raw asset

            myOutline = scrawl.makePicture({
    
                name: name('outline'),
                asset: name('tensorflow-model-interpreter'),
                order: 0,
    
                width: '100%',
                height: '100%',
    
                copyWidth: '80%',
                copyHeight: '80%',
                copyStartX: '10%',
                copyStartY: '10%',
  • §

    We blur here to make the outline merge into the background

    • this does slow the demo down, but needs must.
                filters: [name('body-blur')],
            });
  • §

    Invoke the forever loop

            perform(net);
        })
        .catch(e => console.log('ERROR: ', e));
    })
    .catch(err => console.log(err.message));
  • §

    Scene animation

    Function to display frames-per-second data, and other information relevant to the demo

    const report = reportSpeed('#reportmessage');
  • §

    Create the Display cycle animation

    scrawl.makeRender({
    
        name: name('animation'),
        target: canvas,
        afterShow: report,
    });
  • §

    User interaction

    scrawl.initializeDomInputs([
        ['select', 'backgroundFilter', 0],
        ['select', 'outlineFilter', 1],
    ]);
  • §

    Event listeners

    scrawl.addNativeListener(['input', 'change'], (e) => {
    
        e.preventDefault();
        e.returnValue = false;
    
        if (e && e.target) {
    
            const id = e.target.id,
                val = e.target.value;
    
            if ('backgroundFilter' === id) {
    
                myBackground.clearFilters();
                if (val) myBackground.addFilters(name(val));
            }
            else {
    
                if ('1' === val) myOutline.addFilters(name('body-blur'));
                else myOutline.clearFilters();
            }
        }
    }, '.controlItem');
  • §

    Set DOM form initial input values

    /** @ts-expect-error */
    document.querySelector('#backgroundFilter').value = '';
    /** @ts-expect-error */
    document.querySelector('#outlineFilter').value = '1';
  • §

    Development and testing

    console.log(scrawl.library);